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BxMO 2024: Problems and Solutions

Problem 1

(a) Let 𝑎0, 𝑎1, . . . , 𝑎2024 be real numbers such that |𝑎𝑖+1 − 𝑎𝑖 | ⩽ 1 for 𝑖 = 0, 1, . . . , 2023.
Find the minimum possible value of

𝑎0𝑎1 + 𝑎1𝑎2 + · · · + 𝑎2023𝑎2024.

(b) Does there exist a real number 𝐶 such that

𝑎0𝑎1 − 𝑎1𝑎2 + 𝑎2𝑎3 − 𝑎3𝑎4 + · · · + 𝑎2022𝑎2023 − 𝑎2023𝑎2024 ⩾ 𝐶

for all real numbers 𝑎0, 𝑎1, . . . , 𝑎2024 such that |𝑎𝑖+1 − 𝑎𝑖 | ⩽ 1 for 𝑖 = 0, 1, . . . , 2023?

Solution 1

(a) The minimum value is −506. Note that from |𝑎𝑖 − 𝑎𝑖−1 | ≤ 1 it follows that

𝑎𝑖𝑎𝑖−1 =
(𝑎𝑖 + 𝑎𝑖−1)2 − (𝑎𝑖 − 𝑎𝑖−1)2

4
≥ − (𝑎𝑖 − 𝑎𝑖−1)2

4
≥ −1

4
.

Adding this for 𝑖 = 1, 2, . . . , 2024, we obtain that

𝑎0𝑎1 + 𝑎1𝑎2 + 𝑎2𝑎3 + . . . + 𝑎2023𝑎2024 ≥ 2024 · −1
4
= −506.

We now show that this value can be attained. Indeed, for the sequence (𝑎0, 𝑎1, . . . , 𝑎2024) =

( 1
2 ,−

1
2 ,

1
2 , −1

2 , 1
2 , . . . ,1

2 ) with alternating 1
2 ’s and −1

2 ’s, each term 𝑎𝑖𝑎𝑖−1 is equal to −1
4 , leading

to 𝑎0𝑎1 + 𝑎1𝑎2 + 𝑎2𝑎3 + . . . + 𝑎2023𝑎2024 = 2024 · −1
4 = −506. □

(b) No, such a 𝐶 does not exist. We argue by contradiction. Suppose 𝐶 has this property, and
consider the sequence defined by 𝑎0 = 𝐶 and 𝑎𝑖 = 𝐶 − 1 for 𝑖 = 1, 2, . . . , 2024 satisfies the
condition in the problem. For this sequence, we have 𝑎𝑖𝑎𝑖+1 − 𝑎𝑖+1𝑎𝑖+2 = 0 for 𝑖 = 2, 4, . . . ,
2022, so the sum

𝑎0𝑎1 − 𝑎1𝑎2 + 𝑎2𝑎3 − 𝑎3𝑎4 + 𝑎4𝑎5 − 𝑎5𝑎6 + . . . + 𝑎2022𝑎2023 − 𝑎2023𝑎2024

is equal to
𝑎0𝑎1 − 𝑎1𝑎2 = 𝐶 (𝐶 − 1) − (𝐶 − 1)2 = 𝐶 − 1 < 𝐶,

contradiction. □

Solution 2

We give an alternative construction for part (b). We choose a real constant 𝑁 , from which we define
𝑎𝑖 = 𝑁 + 𝑖 for each 𝑖 = 0, 1, . . . , 2024, which clearly satisfies the requirement |𝑎𝑖 − 𝑎𝑖−1 | ≤ 1 for each
𝑖 = 0, 1, . . . , 1011. Then, it can be seen that for each 𝑖 = 0, 1, . . . , 1011 that

𝑎2𝑖𝑎2𝑖+1 − 𝑎2𝑖+1𝑎2𝑖+2 = 𝑎2𝑖+1(𝑎2𝑖 − 𝑎2𝑖+2) = −2(𝑁 + 2𝑖 + 1) ⩽ −2𝑁.

From this, it can be concluded that

𝑎0𝑎1 − 𝑎1𝑎2 + 𝑎2𝑎3 − 𝑎3𝑎4 + 𝑎4𝑎5 − 𝑎5𝑎6 + . . . + 𝑎2022𝑎2023 − 𝑎2023𝑎2024 ⩽ 1012 · −2𝑁 = −2024𝑁.

As 𝑁 is a constant which can be arbitrarily chosen, there is no constant 𝐶 which lower bounds the
given expression. □
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Problem 2

Let 𝑛 be a positive integer. In a coordinate grid, a path from (0, 0) to (2𝑛, 2𝑛) consists of 4𝑛 consecutive
unit steps (1, 0) or (0, 1). Prove that the number of paths that divide the square with vertices (0, 0),
(2𝑛, 0), (2𝑛, 2𝑛), (0, 2𝑛) into two regions with even areas is(

4𝑛
2𝑛

)
+
(
2𝑛
𝑛

)
2

.

Solution 1

Let 𝑋 denote the set of paths for which 𝐴 and 𝐵 have even area and let 𝑌 denote the set of paths
for which 𝐴 and 𝐵 both have odd area. Because 𝐴 and 𝐵 together form a square of area 4𝑛2, which is
even, |𝑋 | + |𝑌 | equals the total number of paths from (0, 0) to (2𝑛, 2𝑛), which is

(4𝑛
2𝑛
)
.

Denoting a step to the right by 𝑅 and a step upwards by 𝑈, every path from (0, 0) to (2𝑛, 2𝑛) can
be described as a sequence of 4𝑛 symbols, 2𝑛 of which are 𝑅 and 2𝑛 of which are 𝑈. We subdivide
such a sequence into 2𝑛 pairs of consecutive steps that can be 𝑅𝑅, 𝑈𝑅, 𝑅𝑈 or 𝑈𝑈. The number of
possible paths for which neither 𝑈𝑅 nor 𝑅𝑈 occurs is

(2𝑛
𝑛

)
, because out of 2𝑛 pairs that can be either

𝑅𝑅 or 𝑈𝑈 we have to choose 𝑛 that will be 𝑅𝑅. These
(2𝑛
𝑛

)
all belong to 𝑋; in fact, for these paths, 𝐴

and 𝐵 can be subdivided into 2 × 2-square, making their areas divisible by 4. Now consider the paths
that contain at least one 𝑈𝑅- or 𝑅𝑈-pair. If in such a path we replace the first occurrence of a 𝑈𝑅-
or 𝑅𝑈-pair by a pair of the other type (thus replacing 𝑈𝑅 by 𝑅𝑈 or vice versa), the areas of 𝐴 and 𝐵

each change by 1 and therefore become even if they were odd and odd if they were even. Because this
modification is clearly reversible, we conclude that we can pair up all paths that contain at least one
𝑈𝑅- or 𝑅𝑈-pair into pairs of paths, one of which belongs to 𝑋 and one of belongs to 𝑌 . This implies
that |𝑋 | −

(2𝑛
𝑛

)
= |𝑌 |. It follows that

|𝑋 | = |𝑋 | + |𝑌 |
2

+ |𝑋 | − |𝑌 |
2

=

(4𝑛
2𝑛
)

2
+
(2𝑛
𝑛

)
2

.

□

Solution 2

Define 𝑍𝑚,𝑛 to be the number of routes from (0, 0) to (2𝑚, 2𝑛) that divide the rectangle with
vertices (0, 0), (0, 2𝑛), (2𝑚, 2𝑛) and (2𝑚, 0) into two parts of even area. We call such paths good.
We claim that

2𝑍𝑚,𝑛 =

(
2𝑚 + 2𝑛

2𝑚

)
+
(
𝑚 + 𝑛

𝑚

)
for all 𝑚, 𝑛, which for 𝑚 = 𝑛 establishes the desired result. We prove this formula by induction on
𝑚 + 𝑛, noting first that it clearly holds when either 𝑚 or 𝑛 is zero, because 𝑍0,𝑛 = 𝑍𝑚,0 = 1 (there is
only one path from (0, 0) to (0, 2𝑛) or (2𝑚, 0), which is good). Therefore, suppose that 𝑚, 𝑛 ≥ 1 and
consider a good path from (0, 0) to (2𝑚, 2𝑛). This path passes through exactly one of (2𝑚, 2𝑛 − 2),
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(2𝑚 − 1, 2𝑛 − 1) and (2𝑚 − 2, 2𝑛). If it passes through (2𝑚, 2𝑛 − 2) then the subpath from (0, 0) to
(2𝑚, 2𝑛 − 2) must also be good; moreover, for each good path from (0, 0) to (2𝑚, 2𝑛 − 2) there is
exactly one corresponding path from (0, 0) to (2𝑚, 2𝑛), and that path is automatically good because
the new area that gets added is even. Thus, there are 𝑍𝑚,𝑛−1 good paths from (0, 0) to (2𝑚, 2𝑛) that
pass through (2𝑚, 2𝑛 − 2). Similarly, there are 𝑍𝑚−1,𝑛 good paths from (0, 0) to (2𝑚, 2𝑛) that pass
through (2𝑚 − 2, 2𝑛). Now notice that any path from (0, 0) to (2𝑚 − 1, 2𝑛 − 1) (of which there are(2𝑚+2𝑛−2

2𝑚−1
)
) can be extended in two ways to obtain a path from (0, 0) to (2𝑚, 2𝑛); because the resulting

areas for these paths differ by 1, exactly one of these paths is good. All in all, we obtain the recursion

𝑍𝑚,𝑛 = 𝑍𝑚,𝑛−1 + 𝑍𝑚−1,𝑛 +
(
2𝑚 + 2𝑛 − 2

2𝑚 − 1

)
.

By the inductive hypothesis, we have

2𝑍𝑚,𝑛−1 =

(
2𝑚 + 2𝑛 − 2

2𝑚

)
+
(
𝑚 + 𝑛 − 1

𝑚

)
and

2𝑍𝑚−1,𝑛 =

(
2𝑚 + 2𝑛 − 2

2𝑚 − 2

)
+
(
𝑚 + 𝑛 − 1
𝑚 − 1

)
.

Therefore, we obtain

2𝑍𝑚,𝑛 = 2𝑍𝑚,𝑛−1 + 2𝑍𝑚−1,𝑛 + 2
(
2𝑚 + 2𝑛 − 2

2𝑚 − 1

)
=

(
2𝑚 + 2𝑛 − 2

2𝑚

)
+
(
𝑚 + 𝑛 − 1

𝑚

)
+
(
2𝑚 + 2𝑛 − 2

2𝑚 − 2

)
+
(
𝑚 + 𝑛 − 1
𝑚 − 1

)
+ 2

(
2𝑚 + 2𝑛 − 2

2𝑚 − 1

)
.

To simplify the expression on the right hand side, note that we can reorganize the terms(
2𝑚 + 2𝑛 − 2

2𝑚

)
+
(
2𝑚 + 2𝑛 − 2

2𝑚 − 2

)
+ 2

(
2𝑚 + 2𝑛 − 2

2𝑚 − 1

)
as ((

2𝑚 + 2𝑛 − 2
2𝑚

)
+
(
2𝑚 + 2𝑛 − 2

2𝑚 − 1

))
+
((

2𝑚 + 2𝑛 − 2
2𝑚 − 1

)
+
(
2𝑚 + 2𝑛 − 2

2𝑚 − 2

))
,

which, using the addition rules for binomial coefficients, becomes(
2𝑚 + 2𝑛 − 1

2𝑚

)
+
(
2𝑚 + 2𝑛 − 1

2𝑚 − 1

)
=

(
2𝑚 + 2𝑛

2𝑚

)
.

Similarly, we have (
𝑚 + 𝑛 − 1

𝑚

)
+
(
𝑚 + 𝑛 − 1
𝑚 − 1

)
=

(
𝑚 + 𝑛

𝑚

)
.

Putting everything together, we obtain that

2𝑍𝑚,𝑛 =

(
2𝑚 + 2𝑛

2𝑚

)
+
(
𝑚 + 𝑛

𝑚

)
,

which completes the induction. □

Remark

The result from Solution 2 can also be proved using a combinatorial argument like in Solution 1.
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Solution 3

We start by proving the following lemma: for a

(2𝑚 − 1, 2𝑛 − 1)
-grid, there are equally many paths with a region of even area (called even paths), as there are with
odd area (odd paths).

To prove this, we take a path and rotate it around the center of the grid. Then a path spanning a
region with area 𝑥 is mapped on one spanning an area (2𝑚 − 1) (2𝑛 − 1) − 𝑥. This gives a bĳection
between paths creating an even region, and creating an odd region.

Now, for every path from
(0, 0)

to (2𝑛, 2𝑛), consider all the coordinates of the grid points it visits in order. There are
(2𝑛
𝑛

)
of them

which never visit a point with odd coordinates (which we call an odd point). Notice that such paths
are all even.

We now construction a bĳection between the remaining even paths and the odd paths. For each
odd point, there are equally many even as odd paths from (0, 0) to that point. Define then a bĳection
𝜙 between the sets of odd paths and even paths up to this point for each point. Notice that 𝜙 implicitly
depends on the chosen odd point.

Now, for an arbitrary odd path 𝑃, consider the first odd point it passes through. Map 𝑃 to another
path by changing the path up to this odd point to the 𝜙 of the path up to this point. As 𝜙 maps between
even and odd paths, the resulting path is an even path. By the definition of 𝜙, and as each of the
remaining paths goes to an odd point, this mapping defines a bĳection.

We have hence found a bĳection between the odd and even paths in the remaining
(4𝑛
2𝑛
)
−
(2𝑛
𝑛

)
paths,

which yields the required result like in solution 1.
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Problem 3

Let 𝐴𝐵𝐶 be a triangle with incentre 𝐼 and circumcircle 𝛺 such that |𝐴𝐶 | ≠ |𝐵𝐶 |. The internal angle
bisector of ∠𝐶𝐴𝐵 intersects side [𝐵𝐶] in 𝐷, and the external angle bisectors of ∠𝐴𝐵𝐶 and ∠𝐵𝐶𝐴

intersect 𝛺 again in 𝐸 and 𝐹, respectively. Let 𝐺 be the intersection of lines 𝐴𝐸 and 𝐹𝐼 and let 𝛤 be
the circumcircle of triangle 𝐵𝐷𝐼. Show that 𝐸 lies on 𝛤 if and only if 𝐺 lies on 𝛤.

Solution 1

We first notice the general fact that 𝐸𝐹 ⊥ 𝐴𝐼. This can be proved using the following argument.
Denote 𝑆 for the intersection of 𝐸𝐹 and 𝐴𝐼. Then ∠𝐵𝐼𝑆 = (∠𝐼𝐵𝐴 + ∠𝐼 𝐴𝐵) = 1

2 (∠𝐴𝐵𝐶 + ∠𝐵𝐴𝐶) =
1
2 (180◦− ∠𝐵𝐶𝐴) = ∠𝐵𝐶𝐹 = ∠𝐵𝐸𝐹 = ∠𝐵𝐸𝑆. Thus 𝐵, 𝐼, 𝑆, 𝐸 form a cyclic quadrilateral, from which
it can be concluded that 𝐸𝐹 ⊥ 𝐴𝐼.

We will now continue to prove the problem by doing both directions separately. Assume first that 𝐸
lies on𝛤. Then, as angle bisectors are perpendicular to one another, we have that ∠𝐼𝐷𝐸 = ∠𝐼𝐵𝐸 = 90◦.
Then, as 𝐸𝐹 ⊥ 𝐴𝐼, it holds that 𝐷 lies on 𝐸𝐹. It can then be concluded that ∠𝐼𝐷𝐹 = 90◦ = ∠𝐼𝐶𝐹

(again due to perpendicular bisectors), from which it can be concluded that 𝐼, 𝐷, 𝐶, 𝐹 form a cyclic
quadrilateral. We can now calculate that ∠𝐺𝐼𝐷 = 180◦ − ∠𝐹𝐼𝐷 = 180◦ − ∠𝐹𝐶𝐷 = 180◦ − ∠𝐹𝐶𝐵 =

∠𝐴𝐸𝐹 = ∠𝐺𝐸𝐷, where the second to last step follows from the fact that the arcs 𝐵𝐹 and 𝐴𝐹 have the
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same length, as 𝐹 lies on the external bisector of ∠𝐴𝐶𝐵. It now follows that 𝐼, 𝐷, 𝐸, 𝐺 form a cyclic
quadrilteral, thus 𝐺 lies on 𝛤.

For the reverse implication, assume that 𝐺 lies on 𝛤. We can then compute that ∠𝐹𝐴𝐷 = ∠𝐹𝐴𝑆 =

90◦ − ∠𝐴𝐹𝑆 = 90◦ − ∠𝐴𝐹𝐸 = 90◦ − ∠𝐴𝐵𝐸 = ∠𝐴𝐵𝐼 = ∠𝐼𝐵𝐷 = ∠𝐼𝐺𝐷 = ∠𝐹𝐺𝐷, from which we
can conclude that 𝐴, 𝐺, 𝐷, 𝐹 form a cyclic quadrilateral. Similarly to ∠𝐹𝐴𝐷 = ∠𝐼𝐵𝐷, it holds that
∠𝐺𝐴𝐷 = ∠𝐼𝐶𝐷. From this we can compute that ∠𝐼𝐹𝐷 = ∠𝐺𝐹𝐷 = ∠𝐺𝐴𝐷 = ∠𝐼𝐶𝐷, thus 𝐼, 𝐷, 𝐶, 𝐹

forms a cyclic quadrilateral. Hence, ∠𝐼𝐷𝐹 = 180◦ − ∠𝐼𝐶𝐹 = 90◦, so again 𝐷 = 𝑆. We then see that
∠𝐼𝐵𝐸 = 90◦ = ∠𝐼𝐷𝐸 from which we can conclude that 𝐼, 𝐷, 𝐸, 𝐵 form a cyclic quadrilateral. It then
follows that 𝐸 lies on 𝛤.

Solution 2

The external angle bisectors 𝐵𝐸 and 𝐶𝐹 meet the internal bisector 𝐼𝐷 at the 𝐴-excentre 𝐽 of triangle
𝐴𝐵𝐶. If one of 𝐵𝐸𝐷𝐼 and𝐶𝐹𝐼𝐷 is cyclic, then, as 𝐵𝐸𝐶𝐹 is cyclic, |𝐽𝐷 | |𝐽𝐼 | = |𝐽𝐸 | |𝐽𝐵 | = |𝐽𝐶 | |𝐽𝐹 |
by power of a point, and so the other is cyclic, too. This shows that

(1) 𝐵𝐸𝐷𝐼 is cyclic if and only if 𝐶𝐹𝐼𝐷 is cyclic.

Next, ∠𝐺𝐴𝐷 = ∠𝐸𝐴𝐷 = ∠𝐵𝐴𝐷−∠𝐵𝐴𝐸 = ∠𝐴/2−
(
180◦−∠𝐴𝐸𝐵−∠𝐸𝐵𝐴

)
, with ∠𝐴𝐸𝐵 = ∠𝐴𝐶𝐵 =

∠𝐶 and ∠𝐸𝐵𝐴 = ∠𝐸𝐵𝐼 + ∠𝐼𝐵𝐴 = 90◦ + ∠𝐵/2. Hence ∠𝐺𝐴𝐷 = ∠𝐴/2 + ∠𝐵/2 + ∠𝐶 − 90◦ = ∠𝐶/2 =

∠𝐼𝐶𝐷. Thus, if one of 𝐶𝐹𝐼𝐷 and 𝐴𝐺𝐷𝐹 is cyclic, then ∠𝐼𝐶𝐷 = ∠𝐼𝐹𝐷 = ∠𝐺𝐹𝐷 = ∠𝐺𝐴𝐷, and the
other is cyclic, too. We have thus established that

(2) 𝐶𝐹𝐼𝐷 is cyclic if and only if 𝐴𝐺𝐷𝐹 is cylic.

Finally, let 𝐴′ denote the second intersection of 𝐴𝐼 with 𝛺. Then ∠𝐷𝐴𝐹 = ∠𝐴′𝐴𝐹 = 180◦ − ∠𝐹𝐶𝐴′,
with ∠𝐹𝐶𝐴′ = ∠𝐹𝐶𝐼 + ∠𝐼𝐶𝐵 + ∠𝐵𝐶𝐴′ = 90◦ + ∠𝐶/2 + ∠𝐵𝐴𝐴′ = 90◦ + ∠𝐶/2 + ∠𝐴/2. It follows that
∠𝐷𝐴𝐹 = 90◦ − ∠𝐴/2 − ∠𝐶/2 = ∠𝐵/2 = ∠𝐷𝐵𝐼. Hence, if one of 𝐴𝐺𝐷𝐹 and 𝐵𝐷𝐼𝐺 is cyclic, then
∠𝐷𝐴𝐹 = ∠𝐷𝐺𝐹 = ∠𝐷𝐺𝐼 = ∠𝐷𝐵𝐼, and so the other is cyclic, too. Hence

(3) 𝐴𝐺𝐷𝐹 is cyclic if and only if 𝐵𝐷𝐼𝐺 is cylic.

These three equivalences prove that 𝐵𝐸𝐷𝐼 is cyclic if and only if 𝐵𝐷𝐼𝐺 is cyclic, i.e. 𝐸 lies on 𝜔 if
and only if 𝐺 does. This completes the proof. □
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𝐴

𝐼

𝐴′

𝐷
𝐵

𝐶𝐸

𝐹

𝐺

𝐽

𝛺

𝜔

Solution 3

This proof only shows 𝐸 ∈ 𝜔 =⇒ 𝐺 ∈ 𝜔. Note that this argument cannot be used straightforwardly
to prove the converse implication.

If 𝐵𝐸𝐷𝐼 is cyclic, let 𝐴′ be the the second intersection of 𝐴𝐼 with 𝛺, so ∠𝐼 𝐴′𝐸 = ∠𝐴𝐴′𝐸 =

180◦ − ∠𝐸𝐵𝐴, with ∠𝐸𝐵𝐴 = ∠𝐸𝐵𝐼 + ∠𝐼𝐵𝐴 = 90◦ + ∠𝐵/2, so ∠𝐼 𝐴′𝐸 = 90◦ − ∠𝐵/2. But
∠𝐸𝐼𝐴′ = ∠𝐸𝐵𝐷 since 𝐸𝐵𝐷𝐼 is cyclic, with ∠𝐸𝐵𝐷 = ∠𝐸𝐵𝐼 − ∠𝐷𝐵𝐼 = 90◦ − ∠𝐵/2. Thus
∠𝐸𝐴′𝐼 = ∠𝐸𝐼𝐴′, so 𝐸𝐴′𝐼 is isosceles. Moreover, since 𝐸𝐵𝐷𝐼 is cyclic and ∠𝐸𝐵𝐼 is a right an-
gle, so is ∠𝐼𝐷𝐸 . It follows that 𝐷 is the midpoint of [𝐴𝐼]. Next, the external bisectors 𝐵𝐸 and
𝐶𝐹 and the internal bisector 𝐼𝐷 meet at the 𝐴-excentre 𝐽 of triangle 𝐴𝐵𝐶. By power of a point,
since 𝐵𝐸𝐷𝐼 and 𝐵𝐸𝐶𝐹 are cyclic, |𝐽𝐷 | |𝐽𝐼 | = |𝐽𝐸 | |𝐽𝐵| = |𝐽𝐶 | |𝐽𝐹 |, so 𝐶𝐹𝐼𝐷 is cyclic, too, with
∠𝐹𝐷𝐼 = ∠𝐹𝐶𝐼 = 90◦. We have thus shown that ∠𝐴𝐷𝐸 = ∠𝐹𝐷𝐴 = 90◦, so 𝐷 is the foot of the
altitude from 𝐴 in triangle 𝐴𝐸𝐹. Moreover, all of this shows that 𝐼 is the reflection of 𝐴′, which is
the point at which this altitude meets the circumcircle 𝛺 of 𝐴𝐸𝐹 again, in the side [𝐸𝐹]. Hence 𝐼

is the orthocentre of triangle 𝐴𝐸𝐹. By extension, 𝐹𝐼 is its altitude from 𝐹, and 𝐺 is the foot of this
altitude, so ∠𝐸𝐺𝐼 = 90◦ = ∠𝐼𝐷𝐸 = ∠𝐸𝐵𝐼, and hence 𝐵𝐸𝐷𝐼𝐺 is cyclic. This shows that if 𝐸 lies on

8



BxMO 2024: Problems and Solutions

𝜔, then so does 𝐺. □

Remark

The equivalence 𝐸 ∈ 𝜔 ⇐⇒ 𝐺 ∈ 𝜔 breaks down if triangle 𝐴𝐵𝐶 is not scalene. Indeed, if 𝐴𝐵𝐶 is
isosceles with ∠𝐴 = ∠𝐵, then 𝐹 = 𝐶 and 𝐺 is the intersection of 𝐶𝐼 and 𝐴𝐸 . Angle chasing as above
then shows that ∠𝐺𝐴𝐷 = ∠𝐶/2 = ∠𝐺𝐶𝐷, so 𝐴𝐺𝐷𝐶 is cyclic. Then ∠𝐷𝐺𝐼 = ∠𝐷𝐺𝐶 = ∠𝐷𝐴𝐶 =

∠𝐴/2 = ∠𝐵/2 = ∠𝐷𝐵𝐼, so 𝐵𝐷𝐼𝐺 is cyclic, i.e. 𝐺 ∈ 𝜔. Next, the 𝐴-excentre 𝐽 of triangle 𝐴𝐵𝐶

is the intersection of 𝐵𝐸 , 𝐼𝐷, and the tangent to 𝛺 at 𝐶, which, being the external bisector of ∠𝐶,
is perpendicular to 𝐶𝐼. Hence, if 𝐸 ∈ 𝜔, too, i.e. if 𝐵𝐸𝐷𝐼 were cyclic, then by power of a point,
|𝐽𝐶 |2 = |𝐽𝐸 | |𝐽𝐵| = |𝐽𝐷 | |𝐽𝐼 |, so the circumcircle of 𝐶𝐼𝐷 would be tangent to 𝐽𝐶 at 𝐶, implying
∠𝐶𝐷𝐼 = ∠𝐼𝐶𝐽 = 90◦. This is not however the case, unless ∠𝐵 = ∠𝐶 and hence 𝐴𝐵𝐶 is equilateral.
This shows that the condition in the problem statement that 𝐴𝐵𝐶 is scalene cannot be dropped.

𝐴

𝐵
𝐶 =𝐹

𝐷

𝐼

𝐸

𝐺

𝛺

𝜔
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Problem 4

For each positive integer 𝑛, let rad(𝑛) denote the product of the distinct prime factors of 𝑛. Show
that there exist integers 𝑎, 𝑏 > 1 such that gcd(𝑎, 𝑏) = 1 and

rad(𝑎𝑏(𝑎 + 𝑏)) < 𝑎 + 𝑏

20242024 .

For example, rad(20) = rad(22 · 5) = 2 · 5 = 10 and rad(18) = rad(2 · 32) = 2 · 3 = 6.

Solution 1

We show that the pair (𝑎, 𝑏) of the form 𝑎 = 2𝑝(𝑝−1) , 𝑏 = 3𝑝(𝑝−1) −2𝑝(𝑝−1) for sufficiently larger prime
number 𝑝 satisfies the inequality. First, notice that gcd(𝑎, 𝑏) = gcd(𝑎, 𝑎 + 𝑏) = 1 indeed. In addition,
see that rad(𝑎) = 2, and rad(𝑎 + 𝑏) = 3. Because of Euler-Fermat, as 𝜙(𝑝2) = 𝑝(𝑝 − 1), it can directly
be seen that 𝑝2 | 𝑏. In this case, rad(𝑏) ⩽ 𝑏

𝑝
. It then follows that, as rad is multiplicative for coprime

numbers, that

rad(𝑎𝑏(𝑎 + 𝑏)) = rad(𝑎)rad(𝑏)rad(𝑎 + 𝑏) ⩽ 2 · 3 · 𝑏
𝑝
⩽

6
𝑝
(𝑎 + 𝑏).

Then, by choosing 𝑝 such that 6
𝑝
< 1

20242024 , we found 𝑎 and 𝑏 satifying the inequality.

Solution 2

We show that the pair (𝑎, 𝑏) of the form 𝑎 = 32𝑘 , 𝑏 = 52𝑘 − 32𝑘 for sufficiently large 𝑘 satisifies the
inequality. Again, we have that gcd(𝑎, 𝑏) = gcd(𝑎, 𝑎+ 𝑏) = 1. Similarly to solution 1, rad(𝑎(𝑎+ 𝑏)) =
rad(𝑎)rad(𝑎 + 𝑏) = 3 · 5 = 15. Then, we will show that 2𝑘+1 | 𝑏, from which it would follow that
rad(𝑏) ⩽ 𝑏

2𝑘 . From this, we then see that

rad(𝑎𝑏(𝑎 + 𝑏)) = rad(𝑎(𝑎 + 𝑏))rad(𝑏) ⩽ 15𝑏
2𝑘

.

Like in solution 1, this gives a pair (𝑎, 𝑏) satisfying the inequality for sufficiently large 𝑘 .
There are various ways to show that 2𝑘+1 | 52𝑘 − 32𝑘 , for example directly by applying the Lifting-

The-Exponent Lemma. For a more elementary proof, we can apply induction on 𝑘 . The statement is
clearly true for 𝑘 = 0, and if the statement holds for 𝑘 = 𝑛, then for 𝑘 = 𝑛 + 1 we see that

52𝑘 − 32𝑘 = 52𝑛+1 − 32𝑛+1
= (52𝑛)2 − (32𝑛)2 = (52𝑛 − 32𝑛) (52𝑛 + 32𝑛).

From the induction hypothesis, the first factor has 𝑛 + 1 factors of 2. As the second factor is a sum of
two odd numbers, the second term has at least one factor of 2. The product thus has at least 𝑛+2 = 𝑘+1
factors of 2, from which the statement follows by induction.

Solution 3

Choose 𝑎 = (4𝑥 − 1)2, 𝑏 = 4𝑥+1 and 𝑎 + 𝑏 = (4𝑥 + 1)2. That is, 𝑎, 𝑏 and 𝑎 + 𝑏 are squares, where 𝑏

only contains the factor 2. Note that 𝑎 and 𝑏 are indeed coprime. Then rad(𝑎𝑏𝑐) = 2rad(16𝑥 − 1).
Choose then 𝑥 = 5𝑘 such that 𝑥 > 2·20242024.By Lifting the exponent, we know that 5𝑘+1 | 165𝑘−1.

This implies that 2rad(16𝑥 − 1) ⩽ 2(16𝑥 − 1)/5𝑘 < (4𝑥 + 1)2/20242024.

This solution also works with Euler-Fermat, by choosing 𝑥 = 𝜙(5𝑘+1) with 5𝑘 > 20242024.
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