16th Benelux Mathematical Olympiad Valkenswaard, 26th - 28th April 2024

Language: English

The problems are not ordered by estimated difficulty.

Problem 1. (a) Let $a_{0}, a_{1}, \ldots, a_{2024}$ be real numbers such that $\left|a_{i+1}-a_{i}\right| \leqslant 1$ for $i=0,1, \ldots, 2023$. Find the minimum possible value of

$$
a_{0} a_{1}+a_{1} a_{2}+\cdots+a_{2023} a_{2024}
$$

(b) Does there exist a real number C such that

$$
a_{0} a_{1}-a_{1} a_{2}+a_{2} a_{3}-a_{3} a_{4}+\cdots+a_{2022} a_{2023}-a_{2023} a_{2024} \geqslant C
$$

for all real numbers $a_{0}, a_{1}, \ldots, a_{2024}$ such that $\left|a_{i+1}-a_{i}\right| \leqslant 1$ for $i=0,1, \ldots, 2023$?

Problem 2. Let n be a positive integer. In a coordinate grid, a path from $(0,0)$ to $(2 n, 2 n)$ consists of $4 n$ consecutive unit steps $(1,0)$ or $(0,1)$. Prove that the number of paths that divide the square with vertices $(0,0),(2 n, 0),(2 n, 2 n),(0,2 n)$ into two regions with even areas is

$$
\frac{\binom{4 n}{2 n}+\binom{2 n}{n}}{2}
$$

Problem 3. Let $A B C$ be a triangle with incentre I and circumcircle Ω such that $|A C| \neq|B C|$. The internal angle bisector of $\angle C A B$ intersects side [BC] in D, and the external angle bisectors of $\angle A B C$ and $\angle B C A$ intersect Ω again in E and F, respectively. Let G be the intersection of lines $A E$ and $F I$ and let Γ be the circumcircle of triangle BDI. Show that E lies on Γ if and only if G lies on Γ.

Problem 4. For each positive integer n, let $\operatorname{rad}(n)$ denote the product of the distinct prime factors of n. Show that there exist integers $a, b>1$ such that $\operatorname{gcd}(a, b)=1$ and

$$
\operatorname{rad}(a b(a+b))<\frac{a+b}{2024^{2024}}
$$

For example, $\operatorname{rad}(20)=\operatorname{rad}\left(2^{2} \cdot 5\right)=2 \cdot 5=10$ and $\operatorname{rad}(18)=\operatorname{rad}\left(2 \cdot 3^{2}\right)=2 \cdot 3=6$.

