

15th Benelux Mathematical Olympiad

Esch-sur-Alzette, 5th – 7th May 2023

Problems and Solutions

Problem Selection Committee Tijs Buggenhout, Nicolas Radu (Belgium), Johan Konter, Ward van der Schoot (the Netherlands), Bernard Felten, Pierre Haas (Luxembourg).

Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

 $(x-y)(f(x)+f(y)) \leq f(x^2-y^2) \quad \text{for all } x, y \in \mathbb{R}.$

Solution

Clearly, f(x) = cx is a solution for each $c \in \mathbb{R}$ since $(x - y)(cx + cy) = c(x^2 - y^2)$. To show that there are no other solutions, we observe that

- (1) x = y: $0 \le f(0)$; x = 1, y = 0: $f(0) + f(1) \le f(1) \Rightarrow f(0) \le 0$, whence f(0) = 0; (2) y = -x: $2x(f(x) + f(-x)) \le f(0) = 0$; $x \to -x$: $-2x(f(-x) + f(x)) \le 0 \Rightarrow 2x(f(x) + f(-x)) \ge 0$; thus 2x(f(x) + f(-x)) = 0 for all x, so f(-x) = -f(x) for all $x \ne 0$, and hence for all x, since f(0) = 0;
- (3) $x \leftrightarrow y$: $(y-x)(f(y) + f(x)) \leq f(y^2 x^2) = -f(x^2 y^2) \Rightarrow (x y)(f(x) + f(y)) \geq f(x^2 y^2);$ which is the given inequality with the inequality sign reversed, so $(x - y)(f(x) + f(y)) = f(x^2 - y^2)$ must hold for all $x, y \in \mathbb{R};$
- (4) $y \leftrightarrow -y$: $(x-y)(f(x)+f(y)) = f(x^2-y^2) = f(x^2-(-y)^2) = (x+y)(f(x)+f(-y)) = (x+y)(f(x)-f(y));$ expanding yields f(x)y = f(y)x for all $x, y \in \mathbb{R}$.

Taking y = 1 in the last result, f(x) = f(1)x, i.e. f(x) = cx, where c = f(1), for all $x \in \mathbb{R}$. Since we have shown above that, conversely, all such functions are solutions, this completes the proof.

Alternative solution. A slight variation of this argument proves that $(x - y)(f(x) + f(y)) = f(x^2 - y^2)$ must hold for all $x, y \in \mathbb{R}$ as above, and then reaches f(x) = cx as follows:

- (4) $y = \pm 1$: $(x \mp 1)(f(x) \pm f(1)) = f(x^2 1)$ using f(-1) = -f(1) from (2);
- hence $(x 1)(f(x) + f(1)) = (x + 1)(f(x) f(1)) \Rightarrow f(x) = f(1)x = cx$, where c = f(1), on expanding.

Determine all integers $k \ge 1$ with the following property: given k different colours, if each integer is coloured in one of these k colours, then there must exist integers $a_1 < a_2 < \cdots < a_{2023}$ of the same colour such that the differences $a_2 - a_1, a_3 - a_2, \ldots, a_{2023} - a_{2022}$ are all powers of 2.

Solution

We claim that only k = 1 and k = 2 satisfy the required property. First, if $k \ge 3$, we colour each integer with its residue class modulo 3, so that, whenever two integers have the same colour, their difference is divisible by 3, so is not a power of 2. This shows that no $k \ge 3$ has the required property.

In the case k = 1, the sequence defined by $a_n = 2n$ for n = 1, 2, ..., 2023 clearly has the required property. In the case k = 2, we call the colours "red" and "blue", and construct, for each $n \ge 1$ and by induction, integers $a_1 < a_2 < \cdots < a_n$ of the same colour such that $a_{m+1} - a_m$ is a power of 2 for m = 1, 2, ..., n - 1. The statement is trivial for n = 1. For n > 1, let $a_1 < a_2 < \cdots < a_n$ be red integers (without loss of generality) having the desired property. Consider the n + 1 integers $b_i = a_n + 2^i$, for i = 1, 2, ..., n + 1. If one of these, say b_j , is red, then, as $b_j - a_n = 2^j$, the n + 1 red integers $a_1 < a_2 < \cdots < a_n < b_j$ have the desired property. Otherwise, $b_1, b_2, \ldots, b_{n+1}$ are all blue, and $b_{i+1} - b_i = (a_n + 2^{i+1}) - (a_n + 2^i) = 2^i$ for i = 1, 2, ..., n, so the n + 1 blue integers $b_1 < b_2 < \cdots < b_{n+1}$ have the desired property. This completes the inductive step and hence the proof.

Let *ABC* be a triangle with incentre *I* and circumcircle ω . Let *N* denote the second point of intersection of line *AI* and ω . The line through *I* perpendicular to *AI* intersects line *BC*, segment [*AB*], and segment [*AC*] at the points *D*, *E*, and *F*, respectively. The circumcircle of triangle *AEF* meets ω again at *P*, and lines *PN* and *BC* intersect at *Q*. Prove that lines *IQ* and *DN* intersect on ω .

Solution 1

By construction, APEF and APBC are cyclic, and so

$$\angle BDE = \angle CDF = \angle AFD - \angle FCD = \angle AFE - \angle ACB = (180^{\circ} - \angle EPA) - (180^{\circ} - \angle BPA)$$
$$= \angle BPA - \angle EPA = \angle BPE.$$

Hence *DBEP* is cyclic, too. It follows that $\angle IDP = \angle EDP = \angle EBP = \angle ABP = \angle ANP = \angle INP$ since *APBN* is cyclic, and so *PDNI* is also cyclic. In particular, $\angle DPN = \angle DIN = 90^\circ$. Let *R* denote the second intersection of *DP* and ω , so $NQ \perp DR$. Then $\angle NPR = 90^\circ$, so *RN* is a diameter of ω . It is well-known that *N* is the midpoint of the arc \widehat{BC} not containing *A*, whence $RN \perp BC$. Thus *DQ* and *NQ* are altitudes of triangle *RDN*, and so *Q* is its orthocentre. This implies that $RQ \perp DN$, whence, since *RN* is a diameter of ω , the intersection *X* of *RQ* and *DN* lies on ω .

It is also well-known that *N* is the centre of the circumcircle Ω of triangle *BCI*. Since $DI \perp IN$ by construction, DI is tangent to Ω at *I*. As *D* lies on the radical axis *BC* of ω and Ω , it follows that $|DI|^2 = |DB| |DC| = |DX| |DN|$. Hence triangles *DNI* and *DIX* are similar; in particular, $\angle DXI = \angle DIN = 90^\circ$. All of this shows that *R*, *I*, *Q*, *X* lie on a line perpendicular to *DN* that intersects *DN* at $X \in \omega$. This completes the proof.

Solution 2

Let *K* be the midpoint of segment [*BC*]. It is well-known that *N* is the midpoint of the small arc \hat{BC} of ω , so $BC \perp KN$. In particular, $\angle DKN = 90^\circ$. But $\angle DIN = 90^\circ$ by construction, so DIKN is cyclic, with circumcircle Γ .

Moreover, $\angle PEF = 180^\circ - \angle PAF = 180^\circ - \angle PAB = \angle PBC$ and $\angle PFE = \angle PAE = \angle PAB = \angle PCB$ since AFEP and ACBP are cyclic, so triangles PEF and PBC are similar. Now, by construction, I is the midpoint of segment [EF], so, K being the midpoint of [BC], triangles PIF and PKC are similar, too. It follows that $\angle PID = 180^\circ - \angle PIF = 180^\circ - \angle PKC = \angle PKD$, whence P lies on Γ .

Let Ω be the circumcircle of triangle *BCI*. By construction, Q lies on the radical axes *PN* of ω , Γ and *BC* of ω , Ω , so is the radical centre of ω , Γ , Ω . In particular, IQ is the radical axis of Γ , Ω , so is perpendicular to the line joining the centres of Γ , Ω . Now it is well-known that *N* is the centre of Ω , and, since $\angle DIN = 90^\circ$, the centre of Γ is the midpoint of segment [DN]. This shows that $IQ \perp DN$.

Finally, let DN meet ω again at X. Since $DI \perp IN$ by construction and N is the centre of Ω , DI is tangent to Ω at I. As D lies on the radical axis BC of ω , Ω , it follows that $|DI|^2 = |DB| |DC| = |DX| |DN|$. Hence triangles DNI and DIX are similar; in particular, $\angle DXI = \angle DIN = 90^\circ$, i.e. $IX \perp DN$. Since $IQ \perp DN$, it follows that X is the intersection of IQ and DN. Since X lies on ω by construction, this completes the proof.

Solution 3

Since APEF and APBC are cyclic,

$$\angle CPF = \angle BPA - \angle BPC - \angle FPA = (180^{\circ} - \angle BCA) - \angle BAC - \angle FEA$$
$$= (180^{\circ} - \angle BCA - \angle BAC) - \angle BED = \angle CBA - \angle BED = \angle CBE - \angle BED = \angle BDE = \angle CDF,$$

so *DPFC* is cyclic, too. Thence $\angle CPD = \angle CFD = 180^\circ - \angle IFA = 90^\circ + \angle IAF = 90^\circ + \angle CAN = 90^\circ + \angle CPN$. Hence $\angle DPN = \angle CPD - \angle CPN = 90^\circ$. Since $\angle DIN = 90^\circ$ by construction, it follows that *DPIN* is cyclic, with circumcircle Γ . Let J be the second intersection of line IQ and Γ . Moreover, it is well-known that N is the centre of the circumcircle Ω of *BIC*. In particular, |NI| = |NB|, and so, since *NIPJ* and *NBPC* are cyclic,

$$\frac{|JQ|}{|JP|} = \frac{|NQ|}{|NI|} = \frac{|NQ|}{|NB|} = \frac{|CQ|}{|CP|}.$$
(1)

Let *S* now be the point of intersection of *PN* and *Q* such that *P*, *N*, *S* lie on line *PN* in this order. By construction, $\angle QPC = \angle NPC = \angle NAC = \angle BAN = \angle BCN = \angle QCN$, so triangles *CQN* and *PCN* are similar, whence

$$\frac{|CQ|}{|CP|} = \frac{|NC|}{|NP|} = \frac{|NQ|}{|NC|} = \frac{|NC| + |NQ|}{|NC| + |NP|} = \frac{|NS| + |NQ|}{|NS| + |NP|} = \frac{|SQ|}{|SP|}.$$
(2)

Combining (1) and (2) shows that C, J, S lie on a circle of APOLLONIUS, the centre of which lies on the line through P, Q, N, S, so, since |NC| = |NS| by construction, is N. In other words, J lies on Ω .

In particular, |NI| = |NJ|. Now, by construction, $\angle DIN = \angle DJN = 90^\circ$, so the right-angled triangles DIN and DJN are congruent, whence DINJ is a kite. In particular, $IJ \perp DN$. Since Q lies on IJ by definition, this shows that $IQ \perp DN$. We can now conclude as in **Solution 2**.

Solution 4

By construction, *P* is the MIQUEL point of quadrilateral *BCFE* (and the resulting complete quadrilateral with points *A* and *D* added) because it is the intersection of ω and the circumcircle of triangle *AEF*. In particular, *DBEP* is

cyclic. It follows that $\angle IDP = \angle EDP = \angle EBP = \angle ABP = \angle ANP = \angle INP$ since *APBN* is cyclic, and so *PDNI* is also cyclic.

Next, let X be the intersection of DN and ω and let AN meet BC at Y. Then $\angle NAC = \angle A/2 = \angle NCB$, so $\angle BYA = \angle C + \angle NAC = \angle C + \angle NCB = \angle NCA$ and hence

$$\angle DQP = \angle NQY = \angle QYA - \angle QNY = \angle BYA - \angle PNA$$
$$= \angle NCA - \angle PCA = \angle PCN = 180^{\circ} - \angle NXP = \angle DXP.$$

This implies that DXQP is cyclic. In particular, $QX \perp DN$. It now suffices to show that $IX \perp DN$, which we do in the same way as in **Solution 2**.

A positive integer *n* is *friendly* if every pair of neighbouring digits of *n*, written in base 10, differs by exactly 1. *For example*, 6787 *is friendly, but 211 and 901 are not*.

Find all odd natural numbers m for which there exists a friendly integer divisible by 64m.

Solution

Any friendly number divisible by 64 is divisible by 4, and hence the number formed by its last two digits is a multiple of 4, so ends in 00, 04, 08, ..., or 96. A friendly number divisible by 4 must therefore end in 12, 32, 56, or 76, so cannot be divisible by 5. In particular, if $5 \mid m$, then there is no friendly integer divisible by 64m.

We claim that conversely, if *m* is odd and $5 \nmid m$, then there exists a friendly integer divisible by 64*m*. First, we notice that $343232 = 64 \cdot 5363$ is a friendly number divisible by 64, and hence so is

 $N_k = 343232343232 \cdots 343232 = 343232 \cdot (1 + 10^6 + \dots + 10^{6k})$ for $k = 0, 1, 2, \dots$

Now the sequence N_0, N_1, N_2, \ldots eventually repeats modulo m, i.e. there exist positive integers $k < \ell$ such that $N_\ell \equiv N_k \pmod{m}$. Hence $m \mid N_\ell - N_k = 10^{6(k+1)} N_{\ell-k-1}$. Since m is odd and $5 \nmid m$, (10, m) = 1, so $m \mid N_{\ell-k-1}$. By construction, $64 \mid N_{\ell-k-1}$. Thus, as m is odd and hence (64, m) = 1, we conclude that $64m \mid N_{\ell-k-1}$. This completes the proof.

The solution divides into two parts: (1) showing that, if $5 \mid m$, then there is no friendly integer divisible by 64m; (2) showing that, if $5 \nmid m$, then there is a friendly integer divisible by 64m.

Alternative solution for part (1). If $5 \mid m$, then $20 \mid 64m$. The last two digits of a multiple of 20 are 00, 20, 40, 60, or 80, so this number is not friendly. Thus, if *m* is odd and $5 \mid m$, then there is no friendly integer divisible by 64m.

Alternative solution for part (2). Notice that $N_k = 343232 \cdot (10^{6(k+1)} - 1)/(10^6 - 1)$. Let $M = m(10^6 - 1)$. Since $5 \nmid m$ and m is odd, (10, M) = 1, so, taking $k = \varphi(M) - 1$, we get $10^{6(k+1)} = 10^{6\varphi(M)} \equiv 1 \pmod{M}$ by the EULER-FERMAT theorem, i.e. $m \mid (10^{6(k+1)} - 1)/(10^6 - 1)$, and hence $m \mid N_k$.

Alternative constructions of the integers N_k for part (2). Direct calculation shows that friendly integers divisible by 64 end in 343232, 543232, 123456, or 323456, so the numbers N_k defined in the solution of part (2) above may be replaced by, for instance,

 $34543232 \cdot (1 + 10^8 + \dots + 10^{8k}), 5432123456 \cdot (1 + 10^{10} + \dots + 10^{10k}), 54323456 \cdot (1 + 10^8 + \dots + 10^{8k}).$

Remark. Interestingly, friendly numbers cannot be divisible by arbitrarily high powers of 2. Direct calculation shows that the 60-digit friendly integer 101232121234323456543434343210121212323434343234565656543232 is divisible by 2^{60} , but that there is no friendly integer divisible by 2^{61} . The problem selection committee is not aware of a proof of this fact that eschews direct calculation.