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BxMO 2023: Problems and Solutions

Problem 1

Find all functions 𝑓 : R→ R such that

(𝑥 − 𝑦)
(
𝑓 (𝑥) + 𝑓 (𝑦)

)
⩽ 𝑓

(
𝑥2 − 𝑦2) for all 𝑥, 𝑦 ∈ R.

Solution

Clearly, 𝑓 (𝑥) = 𝑐𝑥 is a solution for each 𝑐 ∈ R since (𝑥 − 𝑦) (𝑐𝑥 + 𝑐𝑦) = 𝑐
(
𝑥2 − 𝑦2) . To show that there are no other

solutions, we observe that
(1) 𝑥 = 𝑦 : 0 ⩽ 𝑓 (0);

𝑥 = 1, 𝑦 = 0: 𝑓 (0) + 𝑓 (1) ⩽ 𝑓 (1) ⇒ 𝑓 (0) ⩽ 0, whence 𝑓 (0) = 0;

(2) 𝑦 = −𝑥 : 2𝑥
(
𝑓 (𝑥) + 𝑓 (−𝑥)

)
⩽ 𝑓 (0) = 0;

𝑥 → −𝑥 : −2𝑥
(
𝑓 (−𝑥) + 𝑓 (𝑥)

)
⩽ 0 ⇒ 2𝑥

(
𝑓 (𝑥) + 𝑓 (−𝑥)

)
⩾ 0;

thus 2𝑥
(
𝑓 (𝑥) + 𝑓 (−𝑥)

)
= 0 for all 𝑥, so 𝑓 (−𝑥) = − 𝑓 (𝑥) for all 𝑥 ≠ 0, and hence for all 𝑥, since 𝑓 (0) = 0;

(3) 𝑥 ↔ 𝑦 : (𝑦 − 𝑥)
(
𝑓 (𝑦) + 𝑓 (𝑥)

)
⩽ 𝑓

(
𝑦2 − 𝑥2) = − 𝑓

(
𝑥2 − 𝑦2) ⇒ (𝑥 − 𝑦)

(
𝑓 (𝑥) + 𝑓 (𝑦)

)
⩾ 𝑓

(
𝑥2 − 𝑦2);

which is the given inequality with the inequality sign reversed, so (𝑥 − 𝑦)
(
𝑓 (𝑥) + 𝑓 (𝑦)

)
= 𝑓

(
𝑥2 − 𝑦2) must hold

for all 𝑥, 𝑦 ∈ R;

(4) 𝑦 ↔ −𝑦 : (𝑥−𝑦)
(
𝑓 (𝑥)+ 𝑓 (𝑦)

)
= 𝑓

(
𝑥2−𝑦2) = 𝑓

(
𝑥2−(−𝑦)2) = (𝑥+𝑦)

(
𝑓 (𝑥)+ 𝑓 (−𝑦)

)
= (𝑥+𝑦)

(
𝑓 (𝑥)− 𝑓 (𝑦)

)
;

expanding yields 𝑓 (𝑥)𝑦 = 𝑓 (𝑦)𝑥 for all 𝑥, 𝑦 ∈ R.
Taking 𝑦 = 1 in the last result, 𝑓 (𝑥) = 𝑓 (1)𝑥, i.e. 𝑓 (𝑥) = 𝑐𝑥, where 𝑐 = 𝑓 (1), for all 𝑥 ∈ R. Since we have shown
above that, conversely, all such functions are solutions, this completes the proof. □

Alternative solution. A slight variation of this argument proves that (𝑥 − 𝑦)
(
𝑓 (𝑥) + 𝑓 (𝑦)

)
= 𝑓

(
𝑥2 − 𝑦2) must hold for all

𝑥, 𝑦 ∈ R as above, and then reaches 𝑓 (𝑥) = 𝑐𝑥 as follows:
(4) 𝑦 = ±1: (𝑥 ∓ 1)

(
𝑓 (𝑥) ± 𝑓 (1)

)
= 𝑓

(
𝑥2 − 1

)
using 𝑓 (−1) = − 𝑓 (1) from (2);

hence (𝑥 − 1)
(
𝑓 (𝑥) + 𝑓 (1)

)
= (𝑥 + 1)

(
𝑓 (𝑥) − 𝑓 (1)

)
⇒ 𝑓 (𝑥) = 𝑓 (1)𝑥 = 𝑐𝑥, where 𝑐 = 𝑓 (1), on expanding.
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Problem 2

Determine all integers 𝑘 ⩾ 1 with the following property: given 𝑘 different colours, if each integer is coloured
in one of these 𝑘 colours, then there must exist integers 𝑎1 < 𝑎2 < · · · < 𝑎2023 of the same colour such that the
differences 𝑎2 − 𝑎1, 𝑎3 − 𝑎2, . . . , 𝑎2023 − 𝑎2022 are all powers of 2.

Solution

We claim that only 𝑘 = 1 and 𝑘 = 2 satisfy the required property. First, if 𝑘 ⩾ 3, we colour each integer with its
residue class modulo 3, so that, whenever two integers have the same colour, their difference is divisible by 3, so is
not a power of 2. This shows that no 𝑘 ⩾ 3 has the required property.

In the case 𝑘 = 1, the sequence defined by 𝑎𝑛 = 2𝑛 for 𝑛 = 1, 2, . . . , 2023 clearly has the required property. In
the case 𝑘 = 2, we call the colours “red” and “blue”, and construct, for each 𝑛 ⩾ 1 and by induction, integers
𝑎1 < 𝑎2 < · · · < 𝑎𝑛 of the same colour such that 𝑎𝑚+1 − 𝑎𝑚 is a power of 2 for 𝑚 = 1, 2, . . . , 𝑛 − 1. The statement
is trivial for 𝑛 = 1. For 𝑛 > 1, let 𝑎1 < 𝑎2 < · · · < 𝑎𝑛 be red integers (without loss of generality) having the
desired property. Consider the 𝑛 + 1 integers 𝑏𝑖 = 𝑎𝑛 + 2𝑖 , for 𝑖 = 1, 2, . . . , 𝑛 + 1. If one of these, say 𝑏 𝑗 , is red,
then, as 𝑏 𝑗 − 𝑎𝑛 = 2 𝑗 , the 𝑛 + 1 red integers 𝑎1 < 𝑎2 < · · · < 𝑎𝑛 < 𝑏 𝑗 have the desired property. Otherwise,
𝑏1, 𝑏2, . . . , 𝑏𝑛+1 are all blue, and 𝑏𝑖+1 − 𝑏𝑖 =

(
𝑎𝑛 +2𝑖+1) − (

𝑎𝑛 +2𝑖
)
= 2𝑖 for 𝑖 = 1, 2, . . . , 𝑛, so the 𝑛+1 blue integers

𝑏1 < 𝑏2 < · · · < 𝑏𝑛+1 have the desired property. This completes the inductive step and hence the proof. □
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Problem 3

Let 𝐴𝐵𝐶 be a triangle with incentre 𝐼 and circumcircle 𝜔. Let 𝑁 denote the second point of intersection of line 𝐴𝐼
and 𝜔. The line through 𝐼 perpendicular to 𝐴𝐼 intersects line 𝐵𝐶, segment [𝐴𝐵], and segment [𝐴𝐶] at the points
𝐷, 𝐸 , and 𝐹, respectively. The circumcircle of triangle 𝐴𝐸𝐹 meets 𝜔 again at 𝑃, and lines 𝑃𝑁 and 𝐵𝐶 intersect
at 𝑄. Prove that lines 𝐼𝑄 and 𝐷𝑁 intersect on 𝜔.

Solution 1

By construction, 𝐴𝑃𝐸𝐹 and 𝐴𝑃𝐵𝐶 are cyclic, and so

∠𝐵𝐷𝐸 = ∠𝐶𝐷𝐹 = ∠𝐴𝐹𝐷 − ∠𝐹𝐶𝐷 = ∠𝐴𝐹𝐸 − ∠𝐴𝐶𝐵 =
(
180◦ − ∠𝐸𝑃𝐴

)
−
(
180◦ − ∠𝐵𝑃𝐴

)
= ∠𝐵𝑃𝐴 − ∠𝐸𝑃𝐴 = ∠𝐵𝑃𝐸.

Hence 𝐷𝐵𝐸𝑃 is cyclic, too. It follows that ∠𝐼𝐷𝑃 = ∠𝐸𝐷𝑃 = ∠𝐸𝐵𝑃 = ∠𝐴𝐵𝑃 = ∠𝐴𝑁𝑃 = ∠𝐼𝑁𝑃 since 𝐴𝑃𝐵𝑁 is
cyclic, and so 𝑃𝐷𝑁𝐼 is also cyclic. In particular, ∠𝐷𝑃𝑁 = ∠𝐷𝐼𝑁 = 90◦. Let 𝑅 denote the second intersection of
𝐷𝑃 and 𝜔, so 𝑁𝑄 ⊥ 𝐷𝑅. Then ∠𝑁𝑃𝑅 = 90◦, so 𝑅𝑁 is a diameter of 𝜔. It is well-known that 𝑁 is the midpoint
of the arc N𝐵𝐶 not containing 𝐴, whence 𝑅𝑁 ⊥ 𝐵𝐶. Thus 𝐷𝑄 and 𝑁𝑄 are altitudes of triangle 𝑅𝐷𝑁 , and so 𝑄 is
its orthocentre. This implies that 𝑅𝑄 ⊥ 𝐷𝑁 , whence, since 𝑅𝑁 is a diameter of 𝜔, the intersection 𝑋 of 𝑅𝑄 and
𝐷𝑁 lies on 𝜔.

𝐴

𝐵

𝐶

𝜔

𝐼

𝑁

𝐷

𝐸

𝐹
𝑃

𝑄

𝑅

𝑋

𝛺

It is also well-known that 𝑁 is the centre of the circumcircle 𝛺 of triangle 𝐵𝐶𝐼. Since 𝐷𝐼 ⊥ 𝐼𝑁 by construction, 𝐷𝐼
is tangent to 𝛺 at 𝐼. As 𝐷 lies on the radical axis 𝐵𝐶 of 𝜔 and 𝛺, it follows that |𝐷𝐼 |2 = |𝐷𝐵| |𝐷𝐶 | = |𝐷𝑋 | |𝐷𝑁 |.
Hence triangles 𝐷𝑁𝐼 and 𝐷𝐼𝑋 are similar; in particular, ∠𝐷𝑋𝐼 = ∠𝐷𝐼𝑁 = 90◦. All of this shows that 𝑅, 𝐼, 𝑄, 𝑋
lie on a line perpendicular to 𝐷𝑁 that intersects 𝐷𝑁 at 𝑋 ∈ 𝜔. This completes the proof. □
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Solution 2

Let 𝐾 be the midpoint of segment [𝐵𝐶]. It is well-known that 𝑁 is the midpoint of the small arc N𝐵𝐶 of 𝜔, so
𝐵𝐶 ⊥ 𝐾𝑁 . In particular, ∠𝐷𝐾𝑁 = 90◦. But ∠𝐷𝐼𝑁 = 90◦ by construction, so 𝐷𝐼𝐾𝑁 is cyclic, with circumcircle 𝛤.

Moreover, ∠𝑃𝐸𝐹 = 180◦ − ∠𝑃𝐴𝐹 = 180◦ − ∠𝑃𝐴𝐵 = ∠𝑃𝐵𝐶 and ∠𝑃𝐹𝐸 = ∠𝑃𝐴𝐸 = ∠𝑃𝐴𝐵 = ∠𝑃𝐶𝐵 since 𝐴𝐹𝐸𝑃
and 𝐴𝐶𝐵𝑃 are cyclic, so triangles 𝑃𝐸𝐹 and 𝑃𝐵𝐶 are similar. Now, by construction, 𝐼 is the midpoint of
segment [𝐸𝐹], so, 𝐾 being the midpoint of [𝐵𝐶], triangles 𝑃𝐼𝐹 and 𝑃𝐾𝐶 are similar, too. It follows that
∠𝑃𝐼𝐷 = 180◦ − ∠𝑃𝐼𝐹 = 180◦ − ∠𝑃𝐾𝐶 = ∠𝑃𝐾𝐷, whence 𝑃 lies on 𝛤.

𝐴

𝐵

𝐶
𝐾

𝜔

𝐼

𝑁

𝐷

𝐸

𝐹
𝑃

𝑄

𝑋

𝛺

𝛤

Let 𝛺 be the circumcircle of triangle 𝐵𝐶𝐼. By construction, 𝑄 lies on the radical axes 𝑃𝑁 of 𝜔, 𝛤 and 𝐵𝐶 of
𝜔, 𝛺, so is the radical centre of 𝜔, 𝛤, 𝛺. In particular, 𝐼𝑄 is the radical axis of 𝛤, 𝛺, so is perpendicular to the line
joining the centres of 𝛤, 𝛺. Now it is well-known that 𝑁 is the centre of 𝛺, and, since ∠𝐷𝐼𝑁 = 90◦, the centre of
𝛤 is the midpoint of segment [𝐷𝑁]. This shows that 𝐼𝑄 ⊥ 𝐷𝑁 .

Finally, let 𝐷𝑁 meet 𝜔 again at 𝑋 . Since 𝐷𝐼 ⊥ 𝐼𝑁 by construction and 𝑁 is the centre of 𝛺, 𝐷𝐼 is tangent to 𝛺
at 𝐼. As 𝐷 lies on the radical axis 𝐵𝐶 of 𝜔, 𝛺, it follows that |𝐷𝐼 |2 = |𝐷𝐵 | |𝐷𝐶 | = |𝐷𝑋 | |𝐷𝑁 |. Hence triangles
𝐷𝑁𝐼 and 𝐷𝐼𝑋 are similar; in particular, ∠𝐷𝑋𝐼 = ∠𝐷𝐼𝑁 = 90◦, i.e. 𝐼𝑋 ⊥ 𝐷𝑁 . Since 𝐼𝑄 ⊥ 𝐷𝑁 , it follows that 𝑋
is the intersection of 𝐼𝑄 and 𝐷𝑁 . Since 𝑋 lies on 𝜔 by construction, this completes the proof. □

Solution 3

Since 𝐴𝑃𝐸𝐹 and 𝐴𝑃𝐵𝐶 are cyclic,

∠𝐶𝑃𝐹 = ∠𝐵𝑃𝐴 − ∠𝐵𝑃𝐶 − ∠𝐹𝑃𝐴 =
(
180◦ − ∠𝐵𝐶𝐴

)
− ∠𝐵𝐴𝐶 − ∠𝐹𝐸𝐴

=
(
180◦ − ∠𝐵𝐶𝐴 − ∠𝐵𝐴𝐶

)
− ∠𝐵𝐸𝐷 = ∠𝐶𝐵𝐴 − ∠𝐵𝐸𝐷 = ∠𝐶𝐵𝐸 − ∠𝐵𝐸𝐷 = ∠𝐵𝐷𝐸 = ∠𝐶𝐷𝐹,

so 𝐷𝑃𝐹𝐶 is cyclic, too. Thence ∠𝐶𝑃𝐷 = ∠𝐶𝐹𝐷 = 180◦ − ∠𝐼𝐹𝐴 = 90◦ + ∠𝐼 𝐴𝐹 = 90◦ + ∠𝐶𝐴𝑁 = 90◦ + ∠𝐶𝑃𝑁 .
Hence ∠𝐷𝑃𝑁 = ∠𝐶𝑃𝐷 − ∠𝐶𝑃𝑁 = 90◦. Since ∠𝐷𝐼𝑁 = 90◦ by construction, it follows that 𝐷𝑃𝐼𝑁 is cyclic, with
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circumcircle 𝛤. Let 𝐽 be the second intersection of line 𝐼𝑄 and 𝛤. Moreover, it is well-known that 𝑁 is the centre
of the circumcircle 𝛺 of 𝐵𝐼𝐶. In particular, |𝑁𝐼 | = |𝑁𝐵|, and so, since 𝑁𝐼𝑃𝐽 and 𝑁𝐵𝑃𝐶 are cyclic,

|𝐽𝑄 |
|𝐽𝑃 | =

|𝑁𝑄 |
|𝑁𝐼 | =

|𝑁𝑄 |
|𝑁𝐵| =

|𝐶𝑄 |
|𝐶𝑃 | . (1)

Let 𝑆 now be the point of intersection of 𝑃𝑁 and 𝛺 such that 𝑃, 𝑁, 𝑆 lie on line 𝑃𝑁 in this order. By construction,
∠𝑄𝑃𝐶 = ∠𝑁𝑃𝐶 = ∠𝑁𝐴𝐶 = ∠𝐵𝐴𝑁 = ∠𝐵𝐶𝑁 = ∠𝑄𝐶𝑁 , so triangles 𝐶𝑄𝑁 and 𝑃𝐶𝑁 are similar, whence

|𝐶𝑄 |
|𝐶𝑃 | =

|𝑁𝐶 |
|𝑁𝑃 | =

|𝑁𝑄 |
|𝑁𝐶 | =

|𝑁𝐶 | + |𝑁𝑄 |
|𝑁𝐶 | + |𝑁𝑃 | =

|𝑁𝑆 | + |𝑁𝑄 |
|𝑁𝑆 | + |𝑁𝑃 | =

|𝑆𝑄 |
|𝑆𝑃 | . (2)

Combining (1) and (2) shows that 𝐶, 𝐽, 𝑆 lie on a circle of Apollonius, the centre of which lies on the line through
𝑃,𝑄, 𝑁, 𝑆, so, since |𝑁𝐶 | = |𝑁𝑆 | by construction, is 𝑁 . In other words, 𝐽 lies on 𝛺.

𝐴

𝐵

𝐶

𝐽

𝜔

𝐼

𝑁

𝐷

𝐸

𝐹
𝑃

𝑄

𝑆

𝑋

𝛺

𝛤

In particular, |𝑁𝐼 | = |𝑁𝐽 |. Now, by construction, ∠𝐷𝐼𝑁 = ∠𝐷𝐽𝑁 = 90◦, so the right-angled triangles 𝐷𝐼𝑁 and
𝐷𝐽𝑁 are congruent, whence 𝐷𝐼𝑁𝐽 is a kite. In particular, 𝐼𝐽 ⊥ 𝐷𝑁 . Since 𝑄 lies on 𝐼𝐽 by definition, this shows
that 𝐼𝑄 ⊥ 𝐷𝑁 . We can now conclude as in Solution 2. □

Solution 4

By construction, 𝑃 is the Miquel point of quadrilateral 𝐵𝐶𝐹𝐸 (and the resulting complete quadrilateral with points
𝐴 and 𝐷 added) because it is the intersection of 𝜔 and the circumcircle of triangle 𝐴𝐸𝐹. In particular, 𝐷𝐵𝐸𝑃 is
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cyclic. It follows that ∠𝐼𝐷𝑃 = ∠𝐸𝐷𝑃 = ∠𝐸𝐵𝑃 = ∠𝐴𝐵𝑃 = ∠𝐴𝑁𝑃 = ∠𝐼𝑁𝑃 since 𝐴𝑃𝐵𝑁 is cyclic, and so 𝑃𝐷𝑁𝐼
is also cyclic.

𝐴

𝐵

𝐶

𝜔

𝐼

𝑁

𝐷

𝐸

𝐹
𝑃

𝑄

𝑋

𝛺

Next, let 𝑋 be the intersection of 𝐷𝑁 and 𝜔 and let 𝐴𝑁 meet 𝐵𝐶 at 𝑌 . Then ∠𝑁𝐴𝐶 = ∠𝐴/2 = ∠𝑁𝐶𝐵, so
∠𝐵𝑌 𝐴 = ∠𝐶 + ∠𝑁𝐴𝐶 = ∠𝐶 + ∠𝑁𝐶𝐵 = ∠𝑁𝐶𝐴 and hence

∠𝐷𝑄𝑃 = ∠𝑁𝑄𝑌 = ∠𝑄𝑌𝐴 − ∠𝑄𝑁𝑌 = ∠𝐵𝑌 𝐴 − ∠𝑃𝑁𝐴

= ∠𝑁𝐶𝐴 − ∠𝑃𝐶𝐴 = ∠𝑃𝐶𝑁 = 180◦ − ∠𝑁𝑋𝑃 = ∠𝐷𝑋𝑃.

This implies that 𝐷𝑋𝑄𝑃 is cyclic. In particular, 𝑄𝑋 ⊥ 𝐷𝑁 . It now suffices to show that 𝐼𝑋 ⊥ 𝐷𝑁 , which we do
in the same way as in Solution 2. □
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Problem 4

A positive integer 𝑛 is friendly if every pair of neighbouring digits of 𝑛, written in base 10, differs by exactly 1. For
example, 6787 is friendly, but 211 and 901 are not.

Find all odd natural numbers 𝑚 for which there exists a friendly integer divisible by 64𝑚.

Solution

Any friendly number divisible by 64 is divisible by 4, and hence the number formed by its last two digits is a
multiple of 4, so ends in 00, 04, 08, . . . , or 96. A friendly number divisible by 4 must therefore end in 12, 32, 56,
or 76, so cannot be divisible by 5. In particular, if 5 | 𝑚, then there is no friendly integer divisible by 64𝑚.

We claim that conversely, if 𝑚 is odd and 5 ∤ 𝑚, then there exists a friendly integer divisible by 64𝑚. First, we
notice that 343232 = 64 · 5363 is a friendly number divisible by 64, and hence so is

𝑁𝑘 = 343232343232 · · · 343232 = 343232 ·
(
1 + 106 + · · · + 106𝑘 ) for 𝑘 = 0, 1, 2, . . . .

Now the sequence 𝑁0, 𝑁1, 𝑁2, . . . eventually repeats modulo 𝑚, i.e. there exist positive integers 𝑘 < ℓ such that
𝑁ℓ ≡ 𝑁𝑘 (mod 𝑚). Hence 𝑚 | 𝑁ℓ −𝑁𝑘 = 106(𝑘+1)𝑁ℓ−𝑘−1. Since 𝑚 is odd and 5 ∤ 𝑚, (10, 𝑚) = 1, so 𝑚 | 𝑁ℓ−𝑘−1.
By construction, 64 | 𝑁ℓ−𝑘−1. Thus, as 𝑚 is odd and hence (64, 𝑚) = 1, we conclude that 64𝑚 | 𝑁ℓ−𝑘−1. This
completes the proof. □

The solution divides into two parts: (1) showing that, if 5 | 𝑚, then there is no friendly integer divisible by 64𝑚; (2) showing
that, if 5 ∤ 𝑚, then there is a friendly integer divisible by 64𝑚.

Alternative solution for part (1). If 5 | 𝑚, then 20 | 64𝑚. The last two digits of a multiple of 20 are 00, 20, 40, 60, or 80, so
this number is not friendly. Thus, if 𝑚 is odd and 5 | 𝑚, then there is no friendly integer divisible by 64𝑚.

Alternative solution for part (2). Notice that 𝑁𝑘 = 343232 ·
(
106(𝑘+1) − 1

)
/
(
106 − 1

)
. Let 𝑀 = 𝑚

(
106 − 1

)
. Since 5 ∤ 𝑚 and

𝑚 is odd, (10, 𝑀) = 1, so, taking 𝑘 = 𝜑(𝑀) − 1, we get 106(𝑘+1) = 106𝜑 (𝑀 ) ≡ 1 (mod 𝑀) by the Euler–Fermat theorem,
i.e. 𝑚 |

(
106(𝑘+1) − 1

)
/
(
106 − 1

)
, and hence 𝑚 | 𝑁𝑘 .

Alternative constructions of the integers 𝑵𝒌 for part (2). Direct calculation shows that friendly integers divisible by 64
end in 343232, 543232, 123456, or 323456, so the numbers 𝑁𝑘 defined in the solution of part (2) above may be replaced by,
for instance,

34543232 ·
(
1 + 108 + · · · + 108𝑘 ) , 5432123456 ·

(
1+1010+· · ·+1010𝑘 ) , 54323456 ·

(
1 + 108 + · · · + 108𝑘 ) .

Remark. Interestingly, friendly numbers cannot be divisible by arbitrarily high powers of 2. Direct calculation shows that the
60-digit friendly integer 101232121234323456543434343210121212323434343234565656543232 is divisible by 260, but
that there is no friendly integer divisible by 261. The problem selection committee is not aware of a proof of this fact that
eschews direct calculation.
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