15th Benelux Mathematical Olympiad Luxembourg, 5th - 7th May 2023

The problems are not ordered by estimated difficulty.

Problem 1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(x-y)(f(x)+f(y)) \leqslant f\left(x^{2}-y^{2}\right) \quad \text { for all } x, y \in \mathbb{R}
$$

Problem 2. Determine all integers $k \geqslant 1$ with the following property: given k different colours, if each integer is coloured in one of these k colours, then there must exist integers $a_{1}<a_{2}<\cdots<a_{2023}$ of the same colour such that the differences $a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{2023}-a_{2022}$ are all powers of 2 .

Problem 3. Let $A B C$ be a triangle with incentre I and circumcircle ω. Let N denote the second point of intersection of line $A I$ and ω. The line through I perpendicular to $A I$ intersects line $B C$, segment [$A B$], and segment $[A C]$ at the points D, E, and F, respectively. The circumcircle of triangle $A E F$ meets ω again at P, and lines $P N$ and $B C$ intersect at Q. Prove that lines $I Q$ and $D N$ intersect on ω.

Problem 4. A positive integer n is friendly if the difference of each pair of neighbouring digits of n, written in base 10, is exactly 1. For example, 6787 is friendly, but 211 and 901 are not.

Find all odd natural numbers m for which there exists a friendly integer divisible by $64 m$.

