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Problem 1

Let n > 0 be an integer, and let a0, a1, . . . , an be real numbers. Show that there exists k ∈ {0, 1, . . . , n}
such that

a0 + a1x + a2x2 + · · ·+ anxn 6 a0 + a1 + · · ·+ ak

for all real numbers x ∈ [0, 1].

Solution 1

The case n = 0 is trivial; for n > 0, the proof goes by induction on n. We need to make one preliminary
observation:

Claim. For all reals a, b, a + bx 6 max {a, a + b} for all x ∈ [0, 1].

Proof. If b 6 0, then a + bx 6 a for all x ∈ [0, 1]; otherwise, if b > 0, a + bx 6 a + b for all
x ∈ [0, 1]. This proves our claim. �

This disposes of the base case n = 1 of the induction: a0 + a1x 6 max {a0, a0 + a1} for all x ∈ [0, 1]. For
n > 2, we note that, for all x ∈ [0, 1],

a0 + a1x + · · ·+ anxn = a0 + x
(
a1 + a2x + · · ·+ anxn−1)

6 a0 + x(a1 + a2 + · · ·+ ak) 6 max
{
a0, a0 + (a1 + · · ·+ ak)

}
,

for some k ∈ {1, 2, . . . , n} by the inductive hypothesis and our earlier claim. This completes the proof by
induction. �

Solution 2

Define si = a0 +a1 + · · ·+ai for i ∈ {0, 1, . . . , n}. Thus a0 = s0 and ai = si−si−1 for all i ∈ {1, 2, . . . , n}.
Hence

a0 + a1x + a2x2 + · · ·+ anxn = s0 + (s1 − s0)x + (s2 − s1)x2 + . . . + (sn − sn−1)xn

= s0(1− x) + s1(x− x2) + . . . + sn−1(xn−1 − xn) + snxn.

Now choose k ∈ {0, 1, . . . , n} such that sk = max{s0, s1, . . . , sn}. Using the inequality xi−1 − xi > 0,
valid for all i ∈ {1, 2, . . . , n} and all x ∈ [0, 1], in the right-hand side above, it follows that

a0 + a1x + a2x2 + · · ·+ anxn 6 sk(1− x) + sk(x− x2) + · · ·+ sk(xn−1 − xn) + skxn

= sk

[
(1− x) + (x− x2) + · · ·+ (xn−1 − xn) + xn

]
= sk = a0 + a1 + · · ·+ ak.

This completes the proof. �
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Solution 3

The proof proceeds by induction on n. The base case n = 0 is trivial. For n > 1, since x ∈ [0, 1], we have
xn 6 xn−1. Thus, if an > 0, then anxn 6 anxn−1, while, if an < 0, then anxn < 0 trivially. This shows
that anxn 6 max{0, anxn−1}, whence

a0 + a1x + · · ·+ an−1xn−1 + anxn 6 a0 + a1x + · · ·+ max{an−1, an−1 + an}xn−1.

By the inductive hypothesis, the polynomial of degree n− 1 on the right-hand side is bounded above by
a0 + · · ·+ ak for some k ∈ {0, 1, . . . , n− 2} or a0 + · · ·+ an−2 + max{an−1, an−1 + an}. But the latter is
equal to one of a0 + a1 + · · ·+ an−1 or a0 + a1 + · · ·+ an; both are of the desired form, a0 + a1 + · · ·+ ak

for some k ∈ {n− 1, n}. This completes the proof by induction. �
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Problem 2

Let n be a positive integer. There are n ants walking along a line at constant nonzero speeds. Different
ants need not walk at the same speed or walk in the same direction. Whenever two or more ants collide,
all the ants involved in this collision instantly change directions. (Different ants need not be moving in
opposite directions when they collide, since a faster ant may catch up with a slower one that is moving
in the same direction.) The ants keep walking indefinitely.
Assuming that the total number of collisions is finite, determine the largest possible number of collisions
in terms of n.

Solution 1

The order of the ants along the line does not change; denote by v1, v2, . . . , vn the respective speeds of
ants 1, 2, . . . , n in this order. If vi−1 < vi > vi+1 for some i ∈ {2, . . . , n − 1}, then, at each stage, ant
i can catch up with ants i − 1 or i + 1 irrespective of the latters’ directions of motion, so the number
of collisions is infinite. Hence, if the number of collisions is finite, then, up to switching the direction
definining the order of the ants, (i) v1 > · · · > vn or (ii) v1 > · · · > vk−1 > vk 6 · · · 6 vn for some
k ∈ {2, . . . , n− 1}. We need the following observation:

Claim. If v1 > · · · > vm, then ants m− 1 and m collide at most m− 1 times.

Proof. The proof goes by induction on m, the case m = 1 being trivial. Since vm−1 > vm,
ants m− 1 and m can only collide if the former is moving towards the latter. Hence, between
successive collisions with ant m, ant m−1 must reverse direction by colliding with ant m−2.
Since ants m − 1 and m − 2 collide at most (m − 1) − 1 = m − 2 times by the inductive
hypothesis, ants m and m− 1 collide at most (m− 2) + 1 = m− 1 times. �

Hence, in case (i), there are at most 0 +1 + · · ·+ (n−1) = n(n−1)/2 collisions. In case (ii), applying the
claim to ants 1, 2, . . . , k and also to ants n, n− 1, . . . , k by switching their order, the number of collisions
is at most k(k − 1)/2 + (n− k + 1)(n− k)/2 = n(n− 1)/2− (k − 1)(n− k) < n(n− 1)/2.

Now take a coordinate x along the line, and put ants at x = 1, 2, . . . , n with positive initial velocities
and speeds v1 = · · · = vn−1 = 1, vn = ε, for some ε. For ε = 0, collisions occur according to the pattern
shown below for n = 5, which clearly extends to all values of n in such a way that ants m and m + 1
collide exactly m times for m = 1, 2, . . . , n− 1. This yield 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2 collisions in
total. For all sufficiently small ε > 0, the number of collisions remains equal to n(n− 1)/2.

time

x

This shows that the upper bound obtained above can be attained. If the number of collisions is finite,
the largest possible number of collisions is therefore indeed n(n− 1)/2. �
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Solution 2

We show that there are at most n(n−1)/2 collisions if the number of collisions is finite as in Solution 1.
To show that the upper bound of n(n− 1)/2 collisions can be attained, we construct, inductively, an

example of n ants colliding n(n− 1)/2 times, the speeds of the ants decrease from left to right, and after
all collisions all ants move towards the left, with the possible exception of the rightmost ant. In every
case, we will label the ants 1, 2, . . . , n from left to right. For n = 1 this is trivial. For n > 2, we use the
construction for n−1 ants (now labelled 2, 3, . . . , n). We add ant 1 on the left, moving towards the right,
faster than all other ants (so that the speeds of the ants still decrease from left to right), and in such a
way that its first collision (with ant 2) happens after all (n − 1)(n − 2)/2 collisions of the other n − 1
ants. Now the following events happen (in this order) for i = 1, 2, . . . , n−2: ants i and i + 1 collide, after
which ant i moves to the left and ant i + 1 moves to the right. These collisions do happen because the
speeds of the ants decrease from left to right. Then ants n− 1 and n also collide, resulting in ant n− 1
moving to the left. This shows that there are (at least) (n− 1)(n− 2)/2 + (n− 1) = n(n− 1)/2 collisions.
There are in fact no more collisions since the speeds of the ants decrease from left to right; alternatively,
this follows from the upper bound proved previously. Since all ants except ant n are moving towards the
left after the collisions, this completes the inductive construction. �
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Problem 3

Let ABC be a scalene acute triangle. Let B1 be the point on ray [AC such that |AB1| = |BB1|. Let C1

be the point on ray [AB such that |AC1| = |CC1|. Let B2 and C2 be the points on line BC such that
|AB2| = |CB2| and |BC2| = |AC2|. Prove that B1, C1, B2, C2 are concyclic.

Solution 1

By construction, lines B1C2 and B2C1 bisect segments [AB] and [AC], respectively, so their intersection
O is the circumcentre of ABC. Hence ∠BOC = 2∠A and ∠CBO = ∠OCB = 90◦ − ∠A. Now, by
construction, ∠OC1B = 90◦ − ∠A = ∠OCB, so BC1CO is cyclic. Similarly, BCB1O is cyclic by
construction because ∠OB1C = 180◦ −∠AB1O = 90◦ +∠A = 180◦ −∠CBO. In particular, BC1CB1 is
cyclic, too.

Now ∠B1C1B2 = ∠B1C1B−∠B2C1B and ∠B1C2B2 = ∠B1CB−∠CB1C2. But ∠B1C1B = ∠B1CB

since BC1CB1 is cyclic and ∠B2C1B = ∠OC1B = 90◦ − ∠A = 180◦ − ∠OB1C = ∠CB1C2. Hence
∠B1C1B2 = ∠B1C2B2, so B1B2C1C2 is cyclic, as required. �

A

B

C

B1

C1

B2

C2

O

C′

B′

Solution 2

The isosceles triangles AB1B and AC1C have equal base angles ∠BAB1 = ∠C1AC = ∠A, so are similar.
In particular, |AB|/|AB1| = |AC|/|AC1|. Since ∠BAC = ∠B1AC1 = ∠A, it follows that triangles ABC

and AB1C1 are similar, too. In particular, ∠CBA = ∠AB1C1.
By construction, lines B1C2 and B2C1 are the respective perpendicular bisectors of [AB] and [AC],

so meet them at their respective midpoints C ′ and B′. Hence

∠B1C2B2 = ∠C ′C2B = 90◦ − ∠C2BC ′ = 90◦ − ∠CBA = 90◦ − ∠AB1C1 = 90◦ − ∠B′B1C1

= ∠B1C1B′ = ∠B1C1B2.

Hence B1C2C1B2 is cyclic, which completes the proof. �
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Solution 3

By construction, lines B1C2 and B2C1 are the respective perpendicular bisectors of [AB] and [AC], so
meet them at their respective midpoints C ′ and B′. Since ∠B1C ′C1 = 90◦ = ∠C1B′B1, B1C1C ′B′ is
cyclic. Together with the fact that B′C ′ ‖ BC by construction, this implies

∠B1C2B2 = ∠C ′C2B = ∠C2C ′B′ = ∠B1C ′B′ = ∠B1C1B′ = ∠B1C1B2,

whence B1C2C1B2 is cyclic. This completes the proof. �
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Problem 4

A subset A of the natural numbers N = {0, 1, 2, . . . } is called good if every integer n > 0 has at most one
prime divisor p such that n− p ∈ A.

(a) Show that the set S = {0, 1, 4, 9, . . . } of perfect squares is good.
(b) Find an infinite good set disjoint from S.

(Two sets are disjoint if they have no common elements.)

Solution 1

(a) Suppose to the contrary that S is not good, so there exists n ∈ N with two different prime factors
p 6= q such that n− p, n− q are perfect squares. In particular n is not prime. Write n− p = m2, for
some m ∈ N. As p | n, it follows that p | m and hence p2 | m2 since p is prime. Hence there exists
k ∈ N such that n− p = p2k2. Similarly, there exists ` ∈ N such that n− q = q2`2. We observe that
k, ` 6= 0 since n is not prime.
Now we have p− q = (n− q)− (n− p) = (`q− kp)(`q + kp). Since p− q 6= 0, `q− kp 6= 0, and hence
|p − q| = |kp − `q||kp + `q| > |kp + `q| = kp + `q. This is a contradiction however, because, since
k, ` 6= 0, it is clear that kp + `q > p + q > |p− q|. Hence S is good. �

(b) Let q be a prime, and let Q = {q, q3, q5, . . . } be the (infinite) set of odd powers of q, which is disjoint
from S. We claim that Q is good. Indeed, let n ∈ N, and let p | n be a prime such that n− p ∈ Q,
i.e. n− p = q2k+1 for some k ∈ N. Then p | n− p, so p | q2k+1, and hence p = q. Thus Q is good. �

Solution 2

(a) Let p | n be a prime such that n − p = p(n/p − 1) = m2, for some m ∈ N. Since p | m2 and p is
prime, p2 | m2, and hence p | n/p− 1 < n/p, so p <

√
n.

Now suppose to the contrary that S is not good, so there are primes p1 > p2 dividing n such that
n− p1 < n− p2 are perfect squares. Then

n− p2 >
(√

n− p1 + 1
)2

> n− p1 + 2
√

n− p1 =⇒ p1 > p2 + 2
√

n− p1 > 2 + 2
√

n− p1.

The last condition implies that p1 > 2
√

n− 1. But p1 <
√

n by the first part, so
√

n > 2
√

n− 1,
which is a contradiction for n > 1; the cases n = 0 and n = 1 are trivial. Thus S is good. �

(b) We claim that the infinite set P = {3, 5, 7, 11, . . . } of odd primes, which is disjoint from S, is good.
Indeed, let n ∈ N and let p | n be a prime such that n− p = q, for some odd prime q. Then p | n− p,
so p | q, i.e. p = q, and hence n = 2q. Since q is the only odd prime divisor of n = 2q, P is good. �

The set P ′ = {2, 3, 5, 7, 11, . . . } of all primes is also good. The proof is similar: let n ∈ N and let p | n be a
prime such that n− p = q, for some prime q. Then p | n− p, so p | q, i.e. p = q, and hence n = 2q. If q = 2,
then 2 is the only prime divisor of n; if q 6= 2, then the only prime divisor of n, apart from q, is 2. However,
n− 2 = 2(q − 1) /∈ P ′ since q − 1 > 1. Hence P ′ is good. �
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Solution 3

(a) Suppose to the contrary that S is not good, so there exists n ∈ N with two different prime factors
p 6= q such that n − p, n − q are perfect squares. Write n − p = m2, for some m ∈ N. As p | n, it
follows that p | m and hence p2 | m2 since p is prime. Hence there exists k ∈ N such that n−p = p2k2.
Similarly, there exists ` ∈ N such that n−q = q2`2. By construction, n is not prime, so n−p, n−q 6= 0,
whence k, ` > 1.
Hence p2k2 + p = q2`2 + q. Hence p2k2 < p2k2 + p = q2`2 + q < q2`2 + 2q` + 1 = (q` + 1)2. Similarly,
q2`2 < (pk + 1)2, whence q`− 1 < pk < q` + 1. It follows that pk = q`, so p2k2 + p = q2`2 + q yields
the contradiction p = q. Hence S is good. �

(b) Let A be a finite good set such that 0 /∈ A, and let m = max A. Let a > 2m + 1 be an integer. We
claim that A′ = A ∪ {a} is good. Indeed, suppose to the contrary that there exist n ∈ N and primes
p, q | n with p 6= q such that n−p, n−q ∈ A′. If n < a, then n−p, n−q ∈ A, which is a contradiction
because A is good. Hence n > a. Now p | n− p, so n− p > p since 0 /∈ A′. Thus p 6 n/2 and hence
n− p > n/2 > a/2 > m. Similarly, n− q > m. It follows that n− p = n− q = a, which implies the
contradiction p = q. Hence A′ is good.
Now it is clear that any singleton set is good: indeed, if A = {a}, and n ∈ N has prime divisors p, q

such that n− p, n− q ∈ A, then n− p = a = n− q, so p = q. Starting from the singleton T1 = {2},
we use the above construction to obtain, iteratively, good sets T2, T3, . . . of 2, 3, . . . elements. It is
clearly possibly to ensure that they are each disjoint from S by not adding a perfect square at any
stage. Then T = T1 ∪ T2 ∪ · · · is an infinite good set disjoint from S. �
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