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Solutions
Problem 1.

a) Let a, b, c, d be real numbers with 0 6 a, b, c, d 6 1. Prove that

ab(a− b) + bc(b− c) + cd(c− d) + da(d− a) 6
8

27
.

b) Find all quadruples (a, b, c, d) of real numbers with 0 6 a, b, c, d 6 1 for which equality holds in
the above inequality.

Solution. Denote the left-hand side by S. We have

S = ab(a− b) + bc(b− c) + cd(c− d) + da(d− a)

= a2b− ab2 + b2c− bc2 + c2d− cd2 + d2a− da2

= a2(b− d) + b2(c− a) + c2(d− b) + d2(a− c)

= (b− d)(a2 − c2) + (c− a)(b2 − d2)

= (b− d)(a− c)(a + c) + (c− a)(b− d)(b + d)

= (b− d)(a− c)(a + c− b− d).

Assume without loss of generality that a > c, then a− c > 0. Now we consider two cases.

• Suppose b− d > 0. Then if a + c− b− d < 0 we have S 6 0, so we’re done. If a + c− b− d > 0,
we use the AM-GM inequality on a− c, b− d and a + c− b− d, which yields

3
√
S = 3

√
(b− d)(a− c)(a + c− b− d) 6

b− d + a− c + a + c− b− d

3
=

2a− 2d

3
6

2

3
,

so S 6 8
27

.

• Suppose b− d < 0. Then if a + c− b− d > 0 we have S 6 0, so we’re done. If a + c− b− d < 0,
we use the AM-GM inequality on a− c, d− b and b + d− a− c, which yields

3
√
S = 3

√
(d− b)(a− c)(b + d− a− c) 6

d− b + a− c + b + d− a− c

3
=

2d− 2c

3
6

2

3
,

so S 6 8
27

.



Equality in the first case occurs when a−c = b−d = a+c−b−d and a = 1, d = 0. Then 1−c = b = 1+c−b,
which implies 2c = b = 1− c and hence c = 1

3
. This results in (a, b, c, d) = (1, 2

3
, 1
3
, 0). Similarly, equal-

ity in the second case occurs when a − c = d − b = b + d − a − c and d = 1, c = 0. This yields
(a, b, c, d) = (2

3
, 1
3
, 0, 1). The case a 6 c gives the other two cyclic variants, which gives all quadruples

satisfying the equality. �

Problem 2. Pawns and rooks are placed on a 2019× 2019 chessboard, with at most one piece on each
of the 20192 squares. A rook can see another rook if they are in the same row or column and all squares
between them are empty. What is the maximal number p for which p pawns and p+ 2019 rooks can be
placed on the chessboard in such a way that no two rooks can see each other?

Solution. Answer: the maximal p equals 10092.

Write n = 2019 and k = 1009; then n = 2k + 1. We first show that we can place k2 pawns and n + k2

rooks. Each cell of the chess board has coordinates (x, y) with 1 6 x, y 6 n. We colour each cell black
or white depending on whether x + y is even or odd.

Let A be cell (1, k + 1), B be cell (k + 1, 1), C be cell (2k + 1, k + 1) and D be cell (k + 1, 2k + 1), and
consider the skew square ABCD. We place rooks on the cells of this square which have the same colour
as A, and we place pawns on the other cells of this square. In this way, no rook can see another rook.
Now we have placed p = k2 pawns and (k + 1)2 = k2 + (2k + 1) = p + n rooks.

Now we show that we can not place more pawns. Observe that in every row the number of rooks exceeds
the number of pawns by at most 1, since there has to be a pawn between every two neighbouring rooks.
So the total number of rooks exceeds the number of pawns by at most n. On the other hand we are to
place p pawns and p + n rooks, so the number of rooks in every row exceeds the number of pawns by
exactly 1. This means that the rooks and pawns alternate, with rooks at the two ends. For the columns
the same holds.

Consider the `-th row. Let a be the number of pawns in this row and let b be the number of pawns above
the `-th row. For all these pawns, a rook must be somewhere above it. Counting the rooks directly
above these a + b pawns, we conclude that there must be at least a + b rooks in the first `− 1 rows. In
every row the number of rooks exceeds the number of pawns by 1, so in these first ` − 1 rows we have
at least a+ b− (`− 1) pawns. So b > a+ b− (`− 1), yielding a 6 `− 1. We conclude that the `-th row
contains at most ` − 1 pawns. The same holds for the `-th row counted from below (row (n + 1) − `):
also in this row, there are at most `− 1 pawns. As n = 2k + 1, the maximal number p is

k∑
`=1

(`− 1) +
k+1∑
`=1

(`− 1) = k + 2 · 1

2
k(k − 1) = k + k(k − 1) = k2. �



Problem 3. Two circles Γ1 and Γ2 intersect at points A and Z (with A 6= Z). Let B be the centre of
Γ1 and let C be the centre of Γ2. The exterior angle bisector of ∠BAC intersects Γ1 again at X and Γ2

again at Y . Prove that the interior angle bisector of ∠BZC passes through the circumcentre of 4XY Z.

For points P,Q,R that lie on a line ` in that order, and a point S not on `, the interior angle bi-
sector of ∠PQS is the line that divides ∠PQS into two equal angles, while the exterior angle bisector
of ∠PQS is the line that divides ∠RQS into two equal angles.

Solution I. We first prove that ∠AZX = ∠Y ZA. Since the triangles 4BAX,4CAY are isosceles,
and XY is the external bisector of ∠BAC, we see that

∠BXA = ∠XAB = ∠CAY = ∠AY C.

Using these equalities, we find that

∠XBA = 180◦ − ∠BAX − ∠AXB = 180◦ − ∠CY A− ∠Y AC = ∠ACY.

Since B,C are the centres of respectively Γ1,Γ2, this implies that

∠AZX = 1
2
∠ABX = 1

2
∠Y CA = ∠Y ZA.

Let O be the circumcentre of 4XY Z, next we will prove that ∠BZO = ∠AZY . Consider the con-
figuration where ∠ZXA is sharp, then ∠ABZ = 2∠AXZ = 2∠Y XZ = ∠Y OZ. Since 4BZA and
4OZY are isosceles, this implies ∠BZA = ∠OZY . Subtracting ∠OZA (or adding, depending on the
configuration) yields ∠BZO = ∠AZY .
Together with the analogous result ∠CZO = ∠AZX, we conclude ∠BZO = ∠AZY = ∠XZA =
∠OZC, so O lies indeed on the internal bisector of ∠BZC. �

Solution II. Let O the circumcentre of 4XY Z, then we see that OX = OZ. Since B is the centre of
Γ1, we also see that BX = BZ, so OB is the perpendicular bisector of XZ. Therefore ∠BZO = ∠BXO,
and analogously we find ∠CZO = ∠CY O. Note that B,C lie on the same side of XY ; we will consider
the configuration where O is on the opposite side of XY . Then ∠BXO = ∠BXA + ∠AXO. Now the
isosceles triangles 4BXA, 4CAY , 4OXY , and XY being the external bisector of ∠BAC give

∠BXA = ∠XAB = ∠CAY = ∠AY C,

∠AXO = ∠Y XO = ∠OYX = ∠OY A,

so we find that ∠BZO = ∠BXO = ∠AY C +∠OY A = ∠OY C = ∠OZC. Hence O lies on the internal
bisector of ∠BZC. �



Problem 4. An integer m > 1 is rich if for any positive integer n, there exist positive integers x, y, z
such that n = mx2 − y2 − z2. An integer m > 1 is poor if it is not rich.

a) Find a poor integer.

b) Find a rich integer.

a) Solution I. We will show that m = 4 is poor. If y and z are both even, we have 4x2 − y2 − z2 ≡
0 − 0 − 0 = 0 (mod 4). If y is even and z is odd or the other way around, then 4x2 − y2 − z2 ≡
0− 0− 1 ≡ 3 (mod 4). If y and z are both odd, we have 4x2 − y2 − z2 ≡ 0− 1− 1 ≡ 2 (mod 4).
Hence it is impossible to write any integer n ≡ 1 (mod 4) as n = mx2−y2− z2. So m = 4 is poor.
�

Solution II. We will show that m = 3 is poor, by proving that it is impossible to write any
integer n ≡ 5 (mod 8) as n = 3x2 − y2 − z2. We consider the equation modulo 8. If 4 | x, then
n ≡ −y2 − z2 (mod 8). So if n ≡ 5 (mod 8), we need to have y2 + z2 ≡ 3 (mod 8). As y2 and
z2 can only be 0, 1 or 4 mod 8, this is impossible. If x ≡ 2 (mod 4), then 3x2 ≡ 4 (mod 8), so
for n ≡ 5 (mod 8) we need to have y2 + z2 ≡ 7 (mod 8). Again, this is impossible. Finally, if x is
odd, then 3x2 ≡ 3 (mod 8), so for n ≡ 5 (mod 8) we need to have y2 + z2 ≡ 6 (mod 8). This is
impossible as well. So m = 3 is poor. �

b) Solution I. We will show that m = 5 is rich. For any integer x > 2 we can take y = 2x− 2 and
z = x + 3, then

5x2 − y2 − z2 = 5x2 − (4x2 − 8x + 4)− (x2 + 6x + 9) = 2x− 13.

For x > 7, this gives us all odd positive integers.

For any integer x > 1 we can take y = 2x− 1 and z = x + 1, then

5x2 − y2 − z2 = 5x2 − (4x2 − 4x + 1)− (x2 + 2x + 1) = 2x− 2.

For x > 2, this gives us all even positive integers. So m = 5 is rich. �

Solution II. We will show that m = 2 is rich. For any integer x > 3 we can take y = x + 1 and
z = x− 2, then

2x2 − y2 − z2 = 2x2 − (x2 + 2x + 1)− (x2 − 4x + 4) = 2x− 5.

As x can take any positive integer value that is at least 3, this gives us all odd positive integers.

For any integer x > 5 we can take y = x + 2 and z = x− 4, then

2x2 − y2 − z2 = 2x2 − (x2 + 4x + 4)− (x2 − 8x + 16) = 4x− 20.

For x > 6, this gives us all positive integers divisible by 4.

For any integer x > 6 we can take y = x + 3 and z = x− 5, then

2x2 − y2 − z2 = 2x2 − (x2 + 6x + 9)− (x2 − 10x + 25) = 4x− 34.

For x > 9, this gives us all positive integers in the residue class 2 (mod 4). So m = 2 is rich. �

Remark. Considering the equation modulo 8 and 9, we can show that m is poor when m ≡ 0, 3 (mod 4)
or m ≡ 0 (mod 3). This shows that 6, 7, 8, 9, 11, 12 are also poor. Further you can find a construction
showing that m = 10 is rich.


