## 11th Benelux Mathematical Olympiad

Valkenswaard, 26-28 April 2019



The problems are not ordered by estimated difficulty.

## Problem 1.

a) Let a, b, c, d be real numbers with  $0 \le a, b, c, d \le 1$ . Prove that

$$ab(a-b) + bc(b-c) + cd(c-d) + da(d-a) \le \frac{8}{27}.$$

b) Find all quadruples (a, b, c, d) of real numbers with  $0 \le a, b, c, d \le 1$  for which equality holds in the above inequality.

**Problem 2.** Pawns and rooks are placed on a  $2019 \times 2019$  chessboard, with at most one piece on each of the  $2019^2$  squares. A rook *can see* another rook if they are in the same row or column and all squares between them are empty. What is the maximal number p for which p pawns and p + 2019 rooks can be placed on the chessboard in such a way that no two rooks can see each other?

**Problem 3.** Two circles  $\Gamma_1$  and  $\Gamma_2$  intersect at points A and Z (with  $A \neq Z$ ). Let B be the centre of  $\Gamma_1$  and let C be the centre of  $\Gamma_2$ . The exterior angle bisector of  $\angle BAC$  intersects  $\Gamma_1$  again at X and  $\Gamma_2$  again at Y. Prove that the interior angle bisector of  $\angle BZC$  passes through the circumcentre of  $\triangle XYZ$ .

For points P, Q, R that lie on a line  $\ell$  in that order, and a point S not on  $\ell$ , the interior angle bisector of  $\angle PQS$  is the line that divides  $\angle PQS$  into two equal angles, while the exterior angle bisector of  $\angle PQS$  is the line that divides  $\angle RQS$  into two equal angles.

**Problem 4.** An integer m > 1 is *rich* if for any positive integer n, there exist positive integers x, y, z such that  $n = mx^2 - y^2 - z^2$ . An integer m > 1 is *poor* if it is not rich.

- a) Find a poor integer.
- b) Find a rich integer.

Language: English

Time available: 4 hours and 30 minutes

Each problem is worth 7 points